PVP 22

MICROWAVE SOLID STATE DEVICES

22ECMC1T4 Credits: 4

Lecture: 4 periods/week Internal assessment: 40 marks
Semester end examination: 60 marks

.....

Prerequisites: Microwave Engineering

Course outcomes:

At the end of the course Student will be able to

- Understand characteristics of microwave transistors
- Apply BJTs and FETs in microwave circuits
- Apply Transferred-Electron Devices for electronic systems development
- Analyze operation of Avalanche Transit-Time Devices

UNIT-I

Microwave Transistors: Introduction, Microwave Transistors- physical structure, Transistor Configurations, principle of operation, V-I characteristics, Equivalent circuit, Amplification phenomena, Power- frequency limitations, Hetero-junction Bipolar Transistors (HBTs)-physical structure, Operational Mechanism, Applications, Microwave Tunnel Diode-principle of operation, Microwave characteristics.

UNIT-II

Microwave Field Effect Transistors: Introduction, Junction Field Effect Transistor (JFET)-structure, Principle of operation, V-I characteristics, Applications, Metal Semiconductor Field Effect Transistor (MESFET)- structure, principle of operation, Equivalent circuit, Drain current, cut-off frequency and Maximum oscillation frequency, High Electron Mobility Transistor (HEMT)- Structure, operational mechanism, performance characteristics, Applications, Metal Oxide Semiconductor Field Effect Transistor (MOSFET)- structure, principle of operation, Equivalent circuit, Drain current and Trans-conductance, Maximum operation frequency, Applications. MOS Transistors and Memory Devices.

UNIT-III

Transferred-Electron Devices: Introduction, Gunn-Effect Diodes- GaAs Diode, Ridley-Watkins-Hilsum Theory, Modes of operation, LSA Diodes, InP Diodes, CdTe Diodes, Applications (Microwave Generation and Amplification).

PVP 22

UNIT-IV

Avalanche Transit-Time Devices: Introduction, Read Diode- Structure, Operation, Carrier current and external current, Output power and Quality factor, IMPATT Diode- Structure, Different doping profile structures, Operation, Small-signal theory, Power output and Efficiency, applications. TRAPATT- Structure, Principle of Operation, Power output and Efficiency, BARITT- Structure, Principle of Operation, Performance and Applications. Parametric Devices - structure, Nonlinear Reactance and Manley –Rowe Power Relations, Parametric Amplifiers, and applications.

Learning Resources

Text Books

- 1. Samuel Y. Liao, Microwave Devices and Circuits, 3rd Ed., PHI.
- 2. R.E. Collin, Foundations for Microwave Engineering, 2nd Ed. Wiley

References

1. M.L. Sisodia, Vijay Lakshmi Gupta "Microwaves- Introduction to circuits, Devices and Antennas" New Age International Publishers

E-Resources

1. https://nptel.ac.in/courses/108103141